High Efficiency Direct Methane Solid Oxide Fuel Cell System, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell technologies, solid oxide fuel cell (SOFC) based systems are better suited to meeting NASA's efficiency targets while operating directly on methane and oxygen reactants. SOFC power systems for lunar landers and other exploration vehicles are an ideal application for this technology, as well as for power generation on the moon or on Mars. NexTech Materials has established SOFC technology that offers high power density with direct internal fuel reforming and high single-pass fuel utilization, making it uniquely suited for achieving NASA's performance and efficiency requirements. In this project, NexTech will establish a process model for an SOFC system that operates with oxygen and methane reactants, design a lightweight and high efficiency SOFC stack, refine the stack design via modeling and analysis, validate the design and performance predictions via stack testing.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
NexTech Materials,	Lead	Industry	Lewis
Ltd.	Organization		Center, Ohio
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

High Efficiency Direct Methane Solid Oxide Fuel Cell System Project Image

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Efficiency Direct Methane Solid Oxide Fuel Cell System, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations

Ohio

Project Transitions

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140559)

Images

Project ImageHigh Efficiency Direct Methane Solid Oxide Fuel Cell System Project Image

(https://techport.nasa.gov/imag e/132484)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

NexTech Materials, Ltd.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

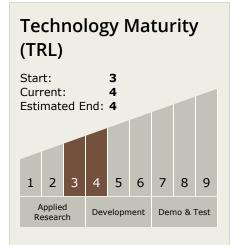
Program Manager:

Carlos Torrez

Principal Investigator:

Scott L Swartz

Co-Investigator:


Scott Swartz

High Efficiency Direct Methane Solid Oxide Fuel Cell System, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

